Советы

Термический способ переноса изображения. Сублимационная печать: особенности технологии. Cовременные способы компьютерной печати

Тепловой способ переноса рисунка проводников на заготовку печатной платы принят "на вооружение" многими радиолюбителями. С другой стороны, чем сложнее плата, тем больше желание упростить процесс ее изготовления.

Обычно для того, чтобы удовлетворительно перевести рисунок большой сложной платы, требуется несколько попыток, поскольку контролировать "на глаз" тепловой режим на значительной площади заготовки крайне трудно. Из-за многократного прогрева заготовки не исключены местные отслоения фольги.

Бумага используется - тонкая, глянцевая. Заготовку платы перед переносом на нее рисунка нужно прогреть утюгом с противоположной стороны, и уже после достижения температуры, близкой к температуре плавления тонера, перевернуть, наложить бумагу с рисунком и прогреть тонер обычным способом. Прогревание заготовки способствует лучшему плавлению тонера со стороны фольги, что улучшает их сцепление при меньшем проникновении в бумагу.

Бумагу я снимаю не после того, как тонер остынет, а пока еще он расплавлен (постепенно, вслед за движением утюга). При этом бумага снимается намного легче и рисунок меньше повреж­дается. Особенно заметны преимущества горячего съема бумаги, когда лист дважды пропущен через лазерный принтер, в этом случае желательно использовать более толстую бумагу.

Конечно, возможно несовмещение рисунков при повторной печати, но если вручную ориентировать листы в лотке принтера, второй и даже третий проходы через принтер дают практически незаметные расхождения линий. К сожалению, не все принтеры позволяют юстировать лист в подающем лотке. Так как толщина тонера в этом случае удваивается, местные стравливания про­водников отсутствуют и плата не требует последующей доработки.

Давление утюга на бумагу должно быть равномерным и меньшим, чем обычно, иначе "толстые" проводники могут быть раздавлены и четкость рисунка ухудшится. Если плата двусторонняя, изготовление второй стороны производится аналогично после травления первой. На время травления второй стороны платы первую защищают лаком (краской).

Второй способ переноса рисунка на заготовку печатной платы - не тепловой, а, скорее, "мокрый". Он состоит из нескольких операций. Лист бумаги с рисунком проводников, распечатанный на лазерном принтере, подвергают воздействию ацетона, бензина или любого другого быстро испаряющегося вещества, растворяющего тонер. Наносить растворитель следует равномерно (я использую для этого распылитель от духов), в небольшом количестве, чтобы тонер не потек, а лишь слегка размягчился по всему объему. В зависимости от качества бумаги может оказаться полезным нанести тонкий слой растворителя на поверхность заготовки, чтобы его хватило только на то, чтобы дополнительно растворить поверхностный слой тонера.

Затем, пока растворитель не испарился, бумагу стороной рисунка проводников прижимают к заготовке и прикатывают фотографическим резиновым валиком. Иногда одного прохода бывает достаточно, чтобы рисунок перешел на заготовку с качеством, достаточным для травления. Но может понадобиться несколько раз прокатать бумагу и даже дождаться полного испарения растворителя. Снимать бумагу в этом случае можно, распылив на нее немного растворителя (или же применить тепловой способ после мокрого и снять бумагу, пока тонер расплавлен).

Так как в мокром способе отсутствует нагревание заготовки, для отслоения фольги нет никаких причин. Адгезия же тонера к фольге получается даже более высокой по сравнению с тепловым способом, так как растворенный тонер имеет меньшую вязкость и лучше смачивает поверхность фольги. Поэтому даже с меньшей, чем при тепловом способе, толщиной защитного слоя рисунка стравливание проводников практически отсутствует.

В качестве варианта можно, наложив лист с рисунком проводников на заготовку, на тыльную сторону листа нанести тонкий слой клея "Момент". На клей нужно положить еще один лист бумаги и прикатать к фольге фотоваликом. Когда размягчившийся тонер прилипнет к плате, следует более тщательно прикатать бумагу валиком меньшей ширины для получения большего давления. Для этого процесса я применяю резиновый прижимной ролик от катушечного магнитофона.

class="eliadunit">

Снимать бумагу с заготовки нужно до того, как клей окончательно засохнет. Качество адгезии очень хорошее, стравливания проводников не происходит. Автор отдает предпочтение именно этому варианту, так как он быстрый, надежный и позволяет после перевода рисунка травить одновременно обе стороны заготовки. Наилучшей для мокрого способа я считаю бумагу "Сне­гурочка".

Одноклассники

Сублимационный принтер превращает электронные изображения в отпечатки высокого качества. Он работает на уникальных твёрдых чернилах, которые в процессе печати превращаются в газ, минуя жидкую фазу. Переход чернил из твёрдого состояния в газообразное становится возможным благодаря тысячам микроскопических нагревателей, встроенными в печатающую головку принтера. Серьёзный химический процесс возгонки чернил получил название «сублимации», он используется для получения высококачественных фотографических отпечатков.

Как устроен сублимационный принтер с технологией прямого переноса изображений? Его главными составляющими являются микропроцессор, печатающая головка, нагреватели (термоэлементы), картриджи с чернилами.

Микропроцессор

Микропроцессор выполняет функцию «мозга» сублимационного принтера. Он контролирует всё и вся, начиная от подачи бумаги в печатающее устройство, и заканчивая выводом готового изображения в приёмный лоток.

Когда принтер получает задание печати, микропроцессор разбивает его на три основных цвета: голубой, пурпурный и жёлтый, в соответствии с цветами сублимационной ленты, которая находится в картридже.

Кроме того, микропроцессор сообщает нагревателям, в какой момент и с какой силой нужно разогревать чернила, а в какой момент уменьшать или прекращать нагрев.

Печатающая головка

Прежде, чем перенести цветные чернила на бумагу, печатающей головке предстоит проделать сложную работу, и перевести твёрдые чернила в газообразное состояние.

Печатающая головка сублимационного принтера

Сублимационная печатающая головка состоит из нескольких тысяч микроскопических термоэлементов, которые по указанию микропроцессора разогревают сублимационную ленту с чернилами.

Нагреватели

Нагреватели, расположенные на печатающей головке сублимационного принтера, имеют поистине микроскопические размеры. По сигналу микропроцессора они включают один из 256 режимов разогрева для каждого из цветов.

Нагреватели сублимационного принтера

Чем сильнее разогревается термоэлемент, тем сильнее он нагревает чернила, и тем больше красителей испаряется с цветной сублимационной ленты и переходит на носитель. Следовательно, от температуры нагрева термоэлементов зависит насыщенность изображения и плотность заливки.

Чернила

В сублимационной печати используются уникальные твёрдые чернила , которые при разогреве не превращаются в жидкость, как большинство твёрдых чернил, а приобретают газообразную форму. Чтобы с сублимационной ленты отделилось цветное облачко красителей, её необходимо разогреть до температуры 200оС.

Как и все молекулы, молекулы сублимационных чернил взаимодействуют друг с другом. При этом сила их отталкивания друг от друга уравновешивается силой притяжения, за счёт которой сохраняется твёрдая структура красителей. В момент, когда чернилам передаётся тепловая энергия термоэлементов, их молекулы начинают колебаться активнее, нарушаются межмолекулярные связи, и молекулы начинают вырываться из общей массы, формируя лёгкое цветное облачко красителей. Чем сильнее разогреваются чернила, тем активнее колеблются их молекулы, и тем насыщеннее чернильное облачко, выделяемое сублимационной лентой.

Сублимационная лента

Чернильное облачко просачивается на бумагу, поверхность которой не нагревается и имеет комнатную температуру. Когда разогретые газообразные чернила попадают на поверхность бумаги, они отдают ей своё тепло. Теряя тепло, молекулы возвращаются в первоначальное состояние, обретая новые межмолекулярные связи. Только на этот раз они твердеют не на сублимационной ленте, а на бумаге, формируя красочное изображение.

Картриджи

Ленты сублимационных чернил помещаются в пластиковые картриджи с двумя встроенными бобинами: подающей и принимающей. В монохромные принтеры устанавливаются картриджи с чёрными сублимационными лентами, а в полноцветные картриджи – ленты с цветными сегментами, соединёнными между собой в длинную полосу. На рисунке отчётливо видно, как внутри сублимационного картриджа располагается цветная красящая лента.

Сублимационный картридж с цветной лентой

Сублимационные картриджи изготавливаются из плотного пластика. По своим физико-химическим свойствам они схожи с лазерными и струйными картриджами, отличает их только уникальная конструкция.

Установка картриджа с сублимационной лентой в принтер

В настоящее время в сублимационные картриджи заправляется не только четырёхцветная лента CMYK (голубая, пурпурная, жёлтая и чёрная), но и зелёная, красная, белая, синяя, золотая, серебряная и т.д. В некоторых сублимационных картриджах можно встретить ленту с дополнительным тонким ламинирующим слоем, предназначенным для защиты изображения, и даже ленту со стирающим покрытием.

Картридж с красящей лентой отдаёт носителю свои чернила последовательно: сначала на бумагу наносятся жёлтые красители, затем пурпурные и, наконец, голубые. В результате за три прохода носителя по печатному тракту формируется полноцветное изображение.

Способность инфракрасных лучей эффективно преобразовы­вать энергию оптического излучения в тепловую эффективно ис­пользуется для целей термографии - особого способа регистра­ции изображений, производимого локальной тепловой реакцией в местах нагревания термографического материала. Разработка данного способа относится к 1950-1952 гг., в ее результате был предложен прямой и косвенный способ.

Термографическая бумага для получения копий пропитана ве­ществом, химический состав и цвет которого необратимо изменяются при нагревании. Поскольку темные участки оригинала поглощают больше энергии излучения, чем светлые области, термографиче­ская бумага при контакте с темными участками оригинала сильнее нагревается и изменяет цвет, образуя позитивное изображение. В рассмотренном процессе фотоны взаимодействуют не с атомами фоточувствительной среды, а с агрегатными скоплениями атомов. Фиксирование изображения не требуется, хотя при длительном хранении, особенно в местах с повышенной температурой воздуха, потемнение термографической бумаги происходит по всей поверх­ности.

Термопринтеры. К ним относятся принтеры с термопереносом и термосублимационные принтеры. Все они при работе используют нагрев.

Работа термопринтеров основана на взаимодействии специаль­ной бумаги, которая темнеет при нагревании, и печатающей голов­ки с нагревательными элементами. В процессе печати цветных изображений для переноса красителя на бумагу используется не удар, а точечный нагрев красящей ленты.

Принцип действия термопринтера очень прост. Печатающий элемент представляет собой панель с нагреваемыми элементами. В зависимости от подаваемого напряжения нагреваются те или иные элементы, которые заставляют темнеть специальную термо­бумагу в месте нагрева. Достоинством данного типа принтеров не-


сомненно служит то, что им не нужны расходные материалы кроме специальной бумаги. Недостатком является малая скорость печати.

Широкое практическое применение способ термографии полу­чил в контрольно-кассовых машинах.

В термосублимационных принтерах (термосублимация - про­цесс перехода вещества из твердого состояния в газообразное, минуя жидкое состояние) краситель с поверхности красящей ленты переносится на бумагу. При перемешивании паров красителей раз­личного цвета достигается очень качественная цветовая гамма (фотореалистичный режим печати).

Общий принцип действия термосублимационных печатающих устройств заключается в следующем.

В печатающей головке используется керамическая подложка с резисторами, напряжение на которых регулируется микросхемой. Подложка имеет твердое покрытие из оксида кремния или напыле­ние, идентичное алмазному.


Материал для переноса красителя на бумагу состоит из тонкого прозрачного пластика, покрытого тонким слоем воска, полимера или композиционным материалом, представляющим собой сочета­ние воска и полимера. Этот слой входит в непосредственный кон­такт с бумагой. При подаче напряжения на резистор происходит его нагрев, в результате чего воск или полимер переносится на бумагу. Воск требует меньшей степени нагрева, полимер большей.

После переноса воска пластиковая подложка отделяется от бу­маги, оставляя воск на ней. Этот процесс вызывает сильную заряд­ку бумаги статическим электричеством, и иногда используется спе­циальное оборудование для снятия статики. Другой проблемой является то, что головка сильно перегревается, поэтому для ее ох­лаждения используют специальные алюминиевые радиаторы.

От типа материала, применяемого для переноса красителя, за­висит долговечность изображения. Воск стирается, быстро выцве­тает, в то время как полимерные покрытия даже в сочетании с вос­ком достаточно надежны. Одним из достоинств термопереноса является влагостойкость материала.

При цветной печати производится несколько проходов с различ­ными лентами воска (CMYK-модель), в результате чего формиру­ется полутоновое растровое изображение. Некоторые принтеры позволяют делать точки разных размеров. На таких принтерах ус­тановлена печатающая головка с хорошим охлаждением и очень четкой регулировкой времени и степени нагрева каждой точки, что


позволяет воску растекаться по бумаге. Эта технология дает более плотную заливку на больших площадях.

В настоящее время используют несколько видов сублимацион­ного переноса красителя.

Сублимация красителя (Dye Sublimation). При таком методе краситель переносится с ленты при ее нагревании термоголовкой, которая обеспечивает различные температурные режимы. В зави­симости от температуры происходит перенос большего или мень­шего количества красителя, в результате чего образуются различ­ные оттенки цвета. Такой способ сублимации является наиболее медленным. Изображения, напечатанные таким способом, могут быть подвергнуты вторичному переносу с помощью нагрева. Для печати используется специальная бумага с покрытием, в котором собственно и оседают сублимирующиеся красители.

Термовосковой перенос (Wax Thermal Transfer), При термовос­ковом переносе диапазон рабочих температур несколько ниже, чем в предыдущем случае. "Расплавленный воск, нанесенный на ленту, стекает и застывает на бумаге. Такой способ позволяет увеличить скорость печати, однако технология дает наилучшие результаты при значительном размере деталей изображения, заполняемых одним цветом. При печати полноцветных рисунков становится явно виден растр, как на струйных принтерах с низким разрешением.

Термовосковая гибридная сублимация (ТГС) (Wax Thermal Hybrid Sublimation) - это сочетание воскового переноса и субли­мации красителя. Этот способ также называется настоящей или отложенной сублимацией.

Термоголовка используется для переноса красителя, находяще­гося в восковом носителе. Низкая температура термовоскового процесса переносит частицы красителя на бумагу, но не позволяет ему сублимироваться. Такая технология ориентирована в первую очередь на повторный перенос, т. е. отпечаток переносится на дру­гую поверхность. Для переноса используется термопресс, который расплавляет воск и одновременно позволяет красителю сублими­роваться на поверхность. Технология, разработанная фирмой Sawgrass Systems позволяет получить наилучший результат при повторном переносе, поскольку сублимация красителя на материал с бумаги происходит только при повторном переносе.

Термический перенос сухой смолы (ТПСС) (Thermal Dry Resin Sublimation) аналогичен сублимации красителя. Но вместо того, чтобы переносить одну точку с ленты на бумагу, ТПСС принтеры превращают специальную обезвоженную смолу в пар. Специально


изготовленная бумага абсорбирует газообразный краситель. В ре­зультате получаются отличные оттенки практически без растра. Такие принтеры идеально подходят для печати фотографий. Этот способ печати в основном относится к принтерам ALPS, которые, однако, используют и сублимацию красителя. Принтеры позволяют производить печатать на различных материалах, используя раз­личные красители, включая металлические.

Твердочернильные технологии (Solid Ink Printers) реализованы фирмой Tektronix (серия Tektronix 840-850). Красители здесь пред­ставляют собой твердые частицы красителя CMYK. Частички кра­сителя каждого цвета находится в собственном отделении кар­триджа. Чернила расплавляются и подаются в печатающую головку. Она создает изображение на алюминиевом барабане, с которого и переносится на бумагу. Для того чтобы чернила не за­стывали на барабане, их подогревают. Ширина печатающей голов­ки равна ширине листа. Лист движется относительно головки, кото­рая переносит на него краситель. Наиболее интересной в данном принтере является сама печатающая головка. Печатающая головка представляет собой блок сопел (по 112 на каждый цвет), снабжен­ных пьезоэлементами. При срабатывании пьезоэлемента капля расплавленных чернил попадает на барабан. Скорость печати в цвете доходит до 14 страниц в минуту. Принтер не рекомендуется выключать из сети, поскольку при этом забиваются сопла печа­тающей головки.

К сожалению все сублимационные технологии требуют присут­ствия прецизионной головки. Поэтому такие принтеры стоят доста­точно дорого и не получили при современном уровне развития пе­чатных технологий должного развития. Они рассчитаны на полноцветную печать высокого качества.

Кроме описанных способов термографии известен также элек­тротермографический. В его основе лежит явление спада по­верхностных зарядов при нагревании термографического слоя. Для этого применяются вещества, чувствительные к нагреву, а именно: смолы в виде слоев на бумажной подложке. Сам процесс спада зарядов вызван сильным уменьшением удельного сопротивления смол при повышении температуры. После коронного заряда и на­гревания термографического слоя ИК- излучением, вызывающим снижение удельного сопротивления до низкого уровня, будет про­исходить быстрый спад поверхностного заряда на экспонирован­ных участках. После процесса экспонирования копию со скрытым электростатическим изображением подвергают электрографиче-


скому проявлению, которое образует видимое негативное изоора-жение.

Электротермографические копии по контрасту сравнимы с элек­трофотографическими, однако этот способ значительно уступает последнему по разрешающей способности.

Закрепление состоит в переводе порошка в состояние вязкой жидкости, образующей при затвердевании пленку, имеющую хорошее сцепление с бумагой. Сделать это можно несколькими способами.

    Растворение порошка в парах растворителей (ацетона, четыреххлористого углерода, уайт-спирита), испаряющихся с пропитанных растворителем пористых подушек, находящихся в узких наклонных кюветах. Полимер тонера поглощает растворитель, набухает и, растекаясь, образует жидкую пленку. Теряя растворитель на воздухе, пленка быстро высыхает. Время нахождения копии в парах - 3-10 с. Дольше выдерживать не стоит из-за растекания тонера и искажения штрихов.

    Получается изображение с хорошими репродукционными характеристиками. Когда-то этот способ был широко распространен, но сейчас на практике не применяется, так как органические растворители опасны для здоровья операторов.

    Расплавление смолы, входящей в тонер, с образованием пленки. Этот процесс лежит в основе термических методов закрепления. Самый известный из них - термосиловой (термомеханический) метод. В некоторых инженерных копировальных аппаратах используют бесконтактное термическое закрепление.

Бесконтактное термическое закрепление изображения

Закрепление изображения может производиться с помощью потока теплового ИК-излучения.

Примером служит батарея из нескольких трубчатых тепловых излучателей (рис. 3.3
). Излучатели - кварцевые трубки с размещенной внутри нихромовой спиралью. На рис. 3.3
показана трубка диаметром 10 мм, толщиной стенки 1 мм, нихромовой спиралью мощностью 600 Вт. Длина трубки превышает ширину закрепляемого изображения на удвоенный размер зоны резкого возрастания величины теплового потока. Интенсивность теплового излучения равномерна вдоль оси лампы только в ее средней части. По краям, на расстоянии около 20 мм, поток сильно изменяется. Эти зоны неравномерного нагрева должны находиться за пределами копии. Мощность лампы можно регулировать, изменяя подаваемое на нее напряжение. На рис. 3.3,б
представлена система из двух ламп с отражателем из полированного алюминия 1. Расстояние между лампами a изменяется в зависимости от скорости движения копии. При скорости движения бумаги 2,2 м/мин (7 копий А4 в минуту) a = 40 мм, расстояние до отражателя h 1 = 5 мм, а расстояние от ламп до копии h = 5-8 мм.

Нагрев копии определяется способностью тонерного изображения и бумаги поглощать инфракрасное (тепловое) излучение. Если источником излучения служит импульсная ксеноновая лампа или лампа накаливания с мощным ИК-излучением, мало поглощаемым бумагой (10-15%), то происходит в основном нагрев частиц тонера. Черный тонер поглощает ИК-излучение практически полностью и быстро разогревается до температуры около 160°С. Такое излучение не вызывает тепловой деформации бумаги, так как ею почти не поглощается, что снижает опасность ее застревания в аппарате.

Термосиловой метод закрепления

При термосиловом закреплении копия с тонерным (порошковым) изображением проходит между двумя разогретыми валиками, прижатыми друг к другу (рис. 3.4
). Валики выполняют различные функции.

Прижимной валик 1 прижимает копию лицевой стороной к нагревательному валику (его часто называют фьюзерным) 2. За счет упругой деформации прижимного валика происходят прижим копии под давлением 0,3-0,6 кг/см 2 и изгибание бумаги в зоне контакта в сторону нагревательного валика, что увеличивает площадь контакта.

Нагревательный валик разогревает порошковое изображение до 140-180°С. Тонер оплавляется, и полученная пленка прижимается к бумаге. Время закрепления - 1-2 с.

Фьюзерный валик - полая металлическая (например, стальная) трубка, покрытая слоем тефлона толщиной 40-200 мкм. Этот слой играет роль антипригарного покрытия. Внутри цилиндра размещен нагревательный элемент - галогенная лампа накаливания в форме длинной трубки. Длина трубки превышает ширину максимально допустимого в данном аппарате формата (например, А4) на 30 см с учетом неравномерности нагрева по краям валика.

Прижимной валик - алюминиевый цилиндр, покрытый 10-миллиметровым слоем термостойкой резины, имеющий диаметр и длину одинаковые с фьюзерным валиком.

Копия проходит через закрепляющее устройство (рис. 3.5
), обращенная тонерным изображением в сторону фьюзерного валика, и прижимается к нему вторым валиком. Так как часть тонера может налипнуть на фьюзерный валик, несмотря на исключительно низкие адгезионные свойства тефлона, предусмотрена смазка валика фьюзерным маслом (антипригарной жидкостью). Для этой цели служит специальный узел смазки. Кроме того, в устройстве есть механизм отделения бумаги от валика.

Чтобы обеспечить оплавление порошка, но не допустить вредного перегрева копии, устройство термосилового закрепления снабжено датчиком температуры и термопредохранителем для аварийного отключения нагревательного валика.

Расчет процесса закрепления изображения

Изображение, поступающее в устройство термозакрепления, состоит из частиц тонера, которые должны быть нагреты до температуры, достаточной для закрепления. Для расчета процесса В.Х.Сасом предложена следующая модель.

Представим изображение в виде отдельно лежащих частиц тонера, имеющих форму шариков. Это дает возможность представить закрепление как процесс нагрева отдельной частицы тонера до температуры закрепления. Шарик контактирует с воздухом и бумагой. Примем, что температура воздуха в закрепляющем устройстве вблизи копии равна температуре бумаги. Нагрев проводится излучателями, размещенными по обе стороны копии, и их излучение одинаково.

В основу расчета положены дифференциальные уравнения теплового баланса для частицы тонера и единицы площади бумаги. Уравниваются мощность поглощенной тепловой энергии, с одной стороны, и нагревание частицы и рассеяние поглощенного тепла в окружающее пространство, с другой стороны. Уравнение теплового баланса для частицы тонера выглядит так:

где q - удельная мощность теплового потока, подаваемого закрепляемому изображению со стороны тонерного изображения, Вт/м 2 ;

A т - коэффициент поглощения излучения тонером;

S - площадь проекции частицы тонера, S = πd2/4, м 2 , где d - диаметр частицы, м;

t - время нагревания. с;

Масса частицы тонера г;

γ - удельная масса тонера, г/м 3 ;

с т - удельная массовая теплоемкость материала тонера, Дж/(г×град);

S 1 - площадь поверхности частицы м 2 ;

T - температура, до которой нагрета частица, К;

T" в - температура воздуха вблизи частицы, К;

α - коэффициент теплоотдачи, Вт×м -2 ×град -1 ; α = 2λ/d, где

λ - коэффициент теплопроводности воздуха, Вт×м -1 ×град -1 .

Скорость воздуха относительно частиц тонера принята за нуль. Температура воздуха вблизи изображения равна температуре бумаги Т б.

Температуру бумаги получают, решив дифференциальное уравнение теплового баланса для бумаги, отнесенного к единице ее площади. Градиент температуры по толщине бумаги принят за нуль.

Коэффициент поглощения излучения бумагой равен А б, а если облучение идет с двух сторон, то суммарный коэффициент, К = 2А б.

Уравнение теплового баланса представлено следующей формулой:

где γ б - масса единицы площади бумаги, г/м 2 ;

c б - удельная массовая теплоемкость бумаги; Дж/(г×град);

T B - температура воздуха в закрепляющем устройстве, К.

В результате решения этого уравнения получено выражение

где

T 0 - начальная температура бумаги.

Величина Dt в реальных условиях мала, и поэтому при разложении в степенной ряд ограничиваются первыми двумя членами ряда. Получим выражение для температуры бумаги

Это выражение подставим в уравнение теплового баланса .

Решив уравнение , получим уравнение процесса термического закрепления (для t ≥ 0,05 с):

При закреплении изображения рассматриваемым способом частицы различных размеров нагреваются до разных температур. Чем меньше размер частицы, тем ниже ее температура. Процесс закрепления практически реализуется, если все элементы изображения достигнут температуры плавления тонера. Необходимую для этого температуру назовем T 3 (температура закрепления). Однако при этом никакой произвольно выбранный элемент изображения не должен нагреваться до температуры T i , превышающей предельно допустимую температуру Т пр, иначе копия будет повреждена. Это условие можно записать так:

Время закрепления определяется по плавлению частиц наименьших размеров. Для этих частиц величина M имеет наименьшее значение: M = M min .

Минимально допустимое время закрепления при заданной удельной мощности нагревательного устройства q получают из формулы , заменив T на T 3 , M на M min , t на t 3 , и решив уравнение относительно времени закрепления t 3:

Минимально возможное время закрепления получим, повысив мощность нагревательного устройства до критической величины q k . Это наибольшая величина q, при которой соблюдается условие , то есть нет опасности повреждения копии из-за перегревания.

Из формулы видно, что помимо свойств тонера (T 3 и M min) на процесс закрепления влияют удельная мощность закрепляющего устройства и свойства бумаги: теплоемкость (c б) и теплоотдача (α б, входящие в константы N и S) () Время закрепления увеличивается с возрастанием теплоемкости и уменьшением теплоотдачи бумаги.

Перенос изображения в цветных копировальных аппаратах

При получении цветных изображений производится накопление изображения, перенос его на приемную подложку и термозакрепление полноцветного изображения.

Принципиально можно представить три технологические схемы.

Второй вариант заключается в прохождении бумаги через 4 или 8 секций печати, в которых на нее последовательно печатаются 4 однокрасочных изображения с одной или с двух сторон. При этом способе скорость получения цветного изображения высока и почти не отличается от скорости черно-белого процесса. Этот способ используют в высокоскоростных копировальных аппаратах и цифровых печатных машинах. Полученная копия проходит термическое закрепление.

Основным термическим способом закрепления цветных изображений является термосиловой.

Метод сублимационной печати относится к цифровым способам переноса изображения на материал. В современной полиграфии он стоит в первых рядах по производительности, так как позволяет в короткие сроки получать оттиски практически на любых поверхностях и при этом гарантирует отменное качество.

Кратко о сублимационной печати

Суть метода состоит в переносе краски на запечатываемый материал путем ее сильного нагревания. Во время технологического процесса температура чернил достигает 180-200 °C, вследствие чего они начинают быстро испаряться и в газообразном виде проникать в структуру обрабатываемого изделия. Сублимационная печать - непрямой вид печати, так как перенос красящего вещества происходит через промежуточный носитель. В основном в качестве такового используется бумага. Термоперенос сублимационной краски на запечатываемую поверхность происходит под воздействием давления пресса.

Область применения

Как правило, данный способ получения оттисков применяется для размещения рекламы и декоративного оформления сувенирных изделий. В качестве носителей отпечатанного изображения могут выступать:

  • Домашний текстиль.
  • Предметы одежды.
  • Посуда.
  • Пазлы.
  • Плакаты, баннеры и стенды.

Благодаря тому, что сублимационная печать отличается высоким качеством, особую популярность она получила в области рекламы. Данный способ переноса краски позволяет довольно быстро изготавливать большие тиражи продукции, при этом сохраняя насыщенность и яркость оттисков.

Что касается сувенирных изделий, то они пользуются неменьшим спросом. Стоит лишь отметить, что наиболее распространена печать сублимационным способом на плоских тканевых материалах. Это обусловлено тем, что для объемных изделий требуется приобретение дополнительного оборудования. Например, сублимационная печать на кружках выполняется в термопрессе округлой формы.

Печать сублимационным методом: за и против

Не говоря уже обо всех положительных сторонах цифровой печати, метод сублимации можно назвать заслуженным лидером в области современной полиграфии. В первую очередь, он позволяет сделать технологический процесс максимально рентабельным. Во-вторых, он дает возможность потребителю получить продукцию, обладающую такими преимуществами, как:

  • Стойкость к истиранию и воздействию УФ-лучей.
  • Высокое качество изображений.
  • Термостойкость.

Сублимационная печать обладает еще одной положительной особенностью: она позволяет свободно регулировать объемы тиража. С ее помощью можно изготовить как одну единицу продукции, так и несколько тысяч.

Недостатков у сублимационного метода всего два. Во-первых, печать должна происходить только на материалах белого цвета. Это необходимо для точности цветопередачи. Ко второму недостатку можно отнести то, что краска хорошо закрепляется только на синтетических волокнах.

Сублимационное оборудование: принтеры и термопрессы

Для термопереноса краски на промежуточный носитель используется принтер для сублимационной печати. Его выбирают в соответствии с требованиями, предъявляемыми к конечной продукции. Характеристики сублимационного принтера должны соответствовать трем параметрам:

  • Типу изображений, которые будут печататься (растровые или штриховые).
  • Предполагаемым тиражам продукции.
  • Желаемому формату отпечатываемых листов бумаги.

Перенос изображения на промежуточный материал может производиться абсолютно любым способом: струйным, офсетным, тампонным и т.д. Однако стоит учитывать, что краску нельзя подвергать нагреву до ее взаимодействия с конечным изделием. Поэтому термоструйный принтер для сублимационной печати не используется. Как правило, отдается предпочтение пьезоэлектрическим моделям.

Полученный на бумаге оттиск переносится на изделие при помощи термопресса. Существуют конструкции со стационарными и каландровыми прижимами. Выбор той или иной технологии должен обосновываться особенностями изготавливаемых тиражей. Для выпуска широкоформатной рекламы на баннерах и плакатах используются каландровые термопрессы. Если же печать ограничивается малотиражным изготовлением сувенирных изделий, то отдается предпочтение стационарным моделям.

Материалы для печати сублимационным способом

Технология сублимационной печати позволяет переносить краску практически на любые поверхности. В качестве материала-основы может использоваться ткань, дерево, пластик, стекло, керамика и даже металл. Однако главная особенность процесса состоит в том, что сублимационная краска адгезирует только с полимерными соединениями. Поэтому перед нанесением изображения материал обязательно покрывается специальным лаком на акриловой основе. Если же печать производится на ткани, то она должна не менее чем на 60 % состоять из синтетических волокон. Самые качественные оттиски получаются на чистом полимерном текстиле, полностью изготовленном из полиэфира или полиэстера.

По сравнению с классическими способами переноса краски сублимационная печать - это просто вершина современности. Она не ограничивает пользователя ни в объеме тиража, ни в материалах, ни даже в форме изготавливаемых изделий.