Сравнение

Зарядное устройство из компьютерного бп своими руками. Зарядное из компьютерного блока питания. Разъемы материнской платы

Вы можете самостоятельно сделать зарядное устройство из обычного блока питания компьютера.

Какими свойствами оно будет обладать: напряжение, на аккумулятор будет 14 В,а вот зарядный ток будет зависеть от устройства. Этот способ зарядки предусмотрен генератором автомобиля в стандартном режиме работы.

Отличие этой статьи от иных аналогичных в том, что сборка изделия довольно проста. Вам не нужно делать самодельные платы, и навороченные транзисторы.

Собственно что нам нужно:
1) обычный блок питания от компьютера примерно на 230 вт,то есть канал 12 В потребляет 8 А.
2) автомобильное реле на 12В (с четырьмя контактами) и два диода на ток 1А
3) несколько резисторов разных мощностей (зависит от модели самого блока питания)

После вскрытия этого блока питания автор обнаружил, что в его основе микросхема UC3843. Эта микросхема используется как генератор импульсов и для защиты от сверхтоков. Регулятор напряжения на каналах выхода представлен микросхемой TL431:


Там же был установлен подстроечный резистор, служащий для регуляции выходного напряжения в определенном диапазоне.

Чтобы сделать из этого блока питания зарядное устройство, нам нужно будет убрать ненужные детали.

Отпаиваем от платы переключатель 220\110В и все его провода.
Он нам не нужен, ведь наш блок питания будет всегда работать от напряжения 220.

Затем убираем все провода на выходе, кроме пучка черных проводов (там 4 провода) - это 0В или "общий", и пучка желтых проводов (в пучке 2 провода) - это "+".

Потом сделаем так, чтобы блок работал постоянно при подключении к сети. Стандартно он работает, только если замкнуты нужные провода в тех пучках. Еще необходимо убрать защиту от перенапряжения, так как она отключает блок если напряжение станет выше определенного значения.

Всему причиной то, что нам нужно 14.4В на выходе устройства а не стандартные 12.

Оказалось, что сигналы включения и защиты функционируют через один оптрон,а их всего три.
Для того, чтобы зарядка работа всегда придется замкнуть контакты этого оптрона перемычкой:


После этого действия блок питания будет работать независимо от напряжения в сети.

Следующим шагом будет установка выходного напряжения в 14.4В вместо 12. Для этого пришлось заменить резистор, который был включен последовательно с подстроечным, на резистор 2.7кОм:


Теперь предстоит демонтировать транзистор, который рядом с TL431. (зачем он неизвестно, но блокирует работу микросхемы) Этот транзистор находился вот на этом месте:


Для стабилизации, на выход блока питания добавляем нагрузку в виде резистора на 200 Ом 2Вт(14.4в) а для канала 5В резистор в 68 Ом:


После установки этих резисторов можно приступать к регулированию выходного напряжения без нагрузки на 14.4В. Чтобы ограничить выходной ток на 8А (допустимое значение для нашего блока) нужно увеличить мощность резистора в цепи силового трансформатора, который используется как датчик перегрузки.

Устанавливаем резистор на 47Ом 1 вт вместо стандартного.


И все же не помешает добавить защиту от подключения обратной полярностью. Берем простое автомобильное реле на 12В и два диода 1N4007. Так же чтобы видеть режим работы прибора, неплохо было бы сделать еще 1 диод и резистор 1кОм 0.5Вт.

Схема будет таковой:


Система работы: при подключении аккумулятора верной полярностью, реле включается за счет оставшегося в аккумуляторе заряда. После срабатывания реле идет зарядка аккумулятора от блока питания через замкнутый контакт реле,это нам и будет показывать внешний диод.

Диод, который подключен параллельно катушке реле, служит для защиты от перенапряжения при ее отключении, возникающих за счет ЭДС самоиндукции.

Чтобы приклеить реле - лучше использовать силиконовый герметик, так как он останется эластичным даже после засыхания.


Затем припаиваются провода к аккумулятору. Лучше взять гибкие, с сечением 2.5мм2, длинной около метра. Для подключения к аккумулятору используются "крокодилы" на концах проводов. Чтобы закрепить их в корпусе автор использовал пару нейлоновых стяжек(он их продел в просверленные в радиаторе отверстия)

Зарядное устройство из компьютерного блока питания для автомобильной аккумуляторной батареи можно собрать самостоятельно. И такой агрегат пользуется популярностью. Ведь на его подготовку требуется минимум средств. При этом получается эффективное ЗУ.

На состояние автоаккумуляторной батареи обращают внимание в зимний период. Ведь в это время плотность электролитического состава меняется, быстро теряется заряд. В результате, запуск двигателя усложняется. Для решения этой проблемы используют зарядные устройства.

Разработкой и сборкой зу для акб занимаются многие компании. Поэтому подобрать модель с требуемыми параметрами сможет каждый водитель. Такие модели отличаются обширным функционалом: тренировка источника питания, восстановление заряда, прочее. Их стоимость достаточно высока.

Поэтому автолюбителей интересует зарядное устройство для автомобильного аккумулятора, которое сконструировано из подручных агрегатов и элементов.

Преимущества самостоятельной сборки

  1. Использование подручных материалов, элементов. Поэтому расходы на изготовления сокращаются.
  2. Небольшой вес. Он не превышает 1,5–2 кг. Поэтому перемещать самодельный агрегат для восстановления заряда батареи несложно.
  3. Постоянное охлаждение. В состав блока питания включен вентилятор. Поэтому вероятность нагрева минимальна.

Какие сложности?

  1. Сконструированный преобразователь не всегда работает тихо. Периодически он издает звуки, которые похожи на звон, шипение.
  2. Не допускается контакт самодельной зарядки и корпуса автотранспортного средства. Если заряжаем с включением в сеть, то контакт провоцирует поломку преобразователя, КЗ.
  3. Подключение токопроводящих выводов аккумуляторной батареи к проводам выполняется точно. Если на этом этапе допущены ошибки, то вторичные цепи переделанного блока питания в зарядное устройство выходят из строя.
  4. Все контакты и элементы перед подключением проверяются. Только после этого компьютерный блок питания используется для зарядки.

Правила эксплуатации автоаккумулятора

Для поддержания автоаккумулятора в работоспособном состоянии недостаточно подготовить надежное зарядное устройство. Дополнительно выполняются и такие рекомендации:

  • Постоянная поддержка заряда. Аккумуляторный источник постоянно подзаряжается. При перемещении заряд поступает от генератора и других узлов автотранспорта. Если техника не эксплуатируется, то для восстановления заряда применяют ЗУ, как стационарного, так и портативного типа. Если батарея полностью разряжается, то специалисты рекомендуют проводить стремительное восстановление. В противном случае, запуститься процесс сульфатации свинцовых пластин.
  • Пределы напряжения (около 14 В). Напряжение, которое подается генератором, не должно чрезмерно превышать этот параметр. При этом не имеет особого значения тот факт, какой именно режим запущен. Если мотор не функционирует, то напряжение может снижаться до 12,6–13 В. При таких показателях применяют ЗУ с соответствующими параметрами и индикаторами.
  • Отключение потребителей при неработающем моторе. Если зажигание отключено, то и все устройства, фары отключаются. В противном случае, источник питания достаточно быстро потеряет заряд.
  • Подготовка автоаккумулятора. Перед восстановлением заряда с аккумуляторной батареи удаляют подтеки электролитического состава, пыль. Токопроводящие выводы очищаются от окислов, налета. Перед подачей напряжения тщательно проверяются соединения и провода. Ведь даже минимальные смещения провоцируют нарушения, проблемы.
  • В зимний период источник перемещают в теплое помещение. Ведь при отрицательной температуре электролитический состав становится плотным, густым. Это провоцирует ухудшение прохождения заряда.

Основные этапы изготовления ЗУ

Перед тем как сделать из бп компьютера надежный зарядник, изучаются требования техники безопасности, особенности работы с такими агрегатами. Ведь в первичных цепях блока питания пк присутствует напряжение.

Подготавливаем блок питания. Допускается использование отличающихся по мощности моделей. Чаще всего выполняется переделка компьютерного БП, мощность которого составляет 200–250 Вт.

После выбора модели выполняются последующие действия:

  • Из блока питания компьютера откручиваются болтики. Такие действия необходимы для последующего демонтажа крышки.
  • Определение сердечника, который входит в состав импульсного трансформатора. Его измеряют. Полученное значение удваивают. Для каждого элемента этот параметр индивидуален. При проведении тестов удалось выявить, что для получения мощности в 100 Вт требуется 0,95–1 см2. Ведь зарядка источника питания эффективна, если выдает 60–70 Вт.
  • В состав многих моделей БП входит такая схема, как TL494. Подобная схема вводится в состав разнообразных БП, которые представлены на продажу.

Подготовка схемы

Для подготовки зарядного устройства из компьютерного блока питания своими руками требуются определенные компоненты цепи (их отличительная особенность — +12В). Все остальные элементы изымаются. Для этого используют паяльник. Для упрощения процесса изучаются схемы, которые присутствуют на специальных порталах. На них изображены основные элементы, которые потребуются для БП.

Цепи с такими показателями, как -12В, -/+5 В, изымаются. Демонтируется и переключатель, при помощи которого изменяется напряжение. Выпаивается и схема, которая требуется для сигнала запуска.

Сделать зарядное устройство из БП несложно. Но для этого потребуются резисторы (R43 и R44), которые причислены к опорному типу. Показатели резистора R43 изменяются. В случае необходимости напряжение выходное меняется.

Специалисты рекомендуют заменять R43 на 2 резистора (переменный тип — R432, постоянный тип — R431). Внедрение таких резисторов облегчает процесс создания регулируемого элемента. С его помощью проще изменять силу тока, а также выходное напряжение. Это требуется для сохранения работоспособности автоаккумулятора.

Решая, как переделать БП, стоит сосредоточиться на конденсаторе. На выходной части выпрямителя сосредотачивается стандартный конденсатор. Мастера проводят его замену на элемент, который отличается большими показателями напряжения. Так, часто пользуются конденсатором марки С9.

Рядом с вентилятором, который используется для обдува, сосредотачивается резистор. Его заменяют резистором, который выделяется большим сопротивлением.

При подготовке ЗУ для аккумулятора меняется и расположение вентилятора. Ведь воздушная масса должна поступать в подготавливаемый блок питания.

Со схемы ликвидируют дорожки, которые предназначены для соединения массы, фиксации платы непосредственно к шасси.

Сконструированный блок питания с регулировкой подводят к сети с переменным током. Для этих целей используют стандартную лампу накаливания (производительность составляет 40–100 Вт).

Такие действия выполняются для того, чтобы проверить, насколько эффективная схема получилась. Без предварительного тестирования сложно установить, перегорит ли БП с заданной мощностью при резких изменениях напряжения.

Для правильной настройки БП для автомобильной аккумуляторной батареи требуется соблюдение определенных правил.

  • Введение индикаторов. Для отслеживания того, насколько зарядился автомобильный аккумулятор, используются индикаторы. В состав схемы вводят цифровые или же стрелочные индикаторы. Их легко приобрести в специализированных магазинах или же демонтировать со старой техники. Допускается введение нескольких индикаторов, с помощью которых отслеживается степень заряда, напряжение на токопроводящих выводах.
  • Корпус с креплением или ручками. Наличие такой детали способствует упрощению процесса эксплуатации ЗУ из БП.

К сборке ЗУ из БП портативного компьютера допускается при условии, что есть определенный опыт, знания в области электроники. Проводить какие-либо мероприятия, если нет соответствующей подготовки, запрещено. Ведь в процессе нужно контактировать с токопроводящими выводами, элементами, на которые подается напряжение, ток.

Видео про сборку зарядного из БП компьютера для ватомобильного акб

Всем привет! Также очень полезным данное устройство будет для зарядки гелевых АКБ, использующихся, например, в ИБП (источниках бесперебойного питания).

Схем подобного устройства в сети множество, но мое внимание привлекла именно эта.

Вкратце: устройство построено по топологии АТ и по принципу действия является стабилизатором тока с ограничением максимального напряжения на уровне 14,4 В. Ток заряда 10-12 А при соответствующем трансформаторе Т21, что более чем достаточно для аккумулятора авто…

Основное достоинство данной схемы, на мой взгляд, в том, что при превышении током заряда установленного уровня, схема работает как стабилизатор тока, снижая выходное напряжение и заряжая АКБ постоянным током.

По достижении установленного уровня напряжения, схема переходит в режим стабилизации напряжения, когда напряжение остается постоянным, а ток постепенно падает практически до нуля. Таким образом, не допускается “перезаряда” батареи…

Рис.1 Схема автоматического ЗУ

Также очень хотелось видеть напряжение и ток зарядки, не смотря на то, что автор схемы ЗУ отказался от индикатора. Были отобраны несколько вариантов вольтамперметр а, но выбор пал на вольтамперметр с ЖК-индикатором. Устройство «умеет» измерять напряжение до 32 В и ток до 12 А.

Рис.2 Вольтамперметр с ЖК-индикатором

В качестве индикатора решил использовать Winstar WH0802A-TMI.

Рис.3 ЖК-индикатор

Рис.4 Плата ЗУ

Плату вольтамперметра пришлось делать самому 🙂

Рис.5 Плата вольтамперметра

Все это дело собрал в кучу

Рис.6 Плата ЗУ в сборе

Рис.7 Вид сбоку

Рис.8 Плата ЗУ

Рис.9 Вольтамперметр

В заключение фото готового устройства:

Рис.10 Индикация после включения ЗУ

Левым регулятором выставляется напряжение. 14,4 В – среднее положение. Регулируется от 13 до 16 В. Правым регулятором устанавливается порог срабатывания защиты устройства…

Рис.11 Зарядка гелевой АКБ

Введение.

Скопилось у меня много компьютерных БП, отремонтированных в качестве тренировки этого процесса, но для современных компьютеров уже слабоватых. Что с ними делать?

Решил несколько переделать в ЗУ для зарядки 12В автомобильных аккумуляторов.

Вариант 1.

Итак: начали.

Первым мне подвернулся под руку Linkworld LPT2-20. У этого зверька оказался ШИМ на м/с Linkworld LPG-899. Посмотрел даташит, схему БП и понял – элементарно!

Что оказалось просто шикарно – она питается от 5VSB, т.е наши переделки никак не повлияют на режим её работы. Ноги 1,2,3 используются для контроля выходных напряжений 3,3В, 5В и 12В соответственно в пределах допустимых отклонений. 4-я нога тоже является входом защиты и используется для защиты от отклонений -5В, -12В. Нам все эти защиты не просто не нужны, а даже мешают. Поэтому их надо отключить.

По пунктам:

Стадия разрушения на этом окончена, пора переходить к созиданию.


По большому счету ЗУ у нас уже готово, но в нем нет ограничения зарядного тока (хотя защита от КЗ работает). Для того чтобы ЗУ не давало на аккумулятор столько «сколько влезет» – добавляем цепь на VT1, R5, C1, R8, R9, R10. Как она работает? Очень просто. Пока падение напряжения на R8 подаваемое на базу VT1 через делитель R9, R10 не превышает порог открывания транзистора – он закрыт и не влияет на работу устройства. А вот когда он начинает открываться, то к делителю на R4, R6, R12 добавляется ветка из R5 и транзистора VT1, меняя тем самым его параметры. Это приводит к падению напряжения на выходе устройства и, как следствие, к падению зарядного тока. При указанных номиналах, ограничение начинает работать примерно с 5А, плавно понижая выходное напряжение с ростом тока нагрузки. Настоятельно рекомендую эту цепь не выбрасывать из схемы, иначе, при сильно разряженном аккумуляторе ток может быть настолько большим, что сработает штатная защита, или вылетят силовые транзисторы, или шоттки. И зарядить свой аккумулятор вы не сможете, хотя сообразительные автолюбители догадаются на первом этапе включить автомобильную лампу между ЗУ и аккумулятором чтобы ограничить зарядный ток.

VT2, R11, R7 и HL1 занимается «интуитивной» индикацией тока заряда. Чем ярче горит HL1 – тем больше ток. Можно не собирать, если нет желания. Транзистор VT2 – должен быть обязательно германиевый, потому что падение напряжения на переходе Б-Э у него значительно меньше, чем у кремниевого. А значит, и открываться он будет раньше чем VT1.

Цепь из F1 и VD1, VD2 обеспечивает простейшую защиту от переполюсовки. Очень рекомендую сделать её или собрать другую на реле или чём-нибудь ещё. Вариантов в сети можно найти много.

А теперь о том, зачем нужно оставить канал 5В. Для вентилятора 14,4В многовато, особенно с учетом того что при такой нагрузке БП не греется вообще, ну кроме сборки выпрямителя, она немного греется. Поэтому, мы подключаем его к бывшему каналу 5В (сейчас там - около 6В), и он тихо и нешумно выполняет свою работу. Естественно, с питанием вентилятора есть варианты: стабилизатор, резистор и т.п. В дальнейшем некоторые из них мы увидим.

Всю схему я свободно смонтировал на освобожденном от ненужных деталей месте, не делая никаких плат, с минимумом дополнительных соединений. Выглядело это всё после сборки так:

В итоге, что мы имеем?

Получилось ЗУ с ограничением максимального зарядного тока (достигается уменьшением подаваемого на аккумулятор напряжения при превышении порога в 5А) и стабилизированным максимальным напряжением на уровне 14,4В, что соответствует напряжению в бортовой сети автомобиля. Поэтому, его можно смело использовать, не отключая аккумулятор от бортовой электроники. Это зарядное устройство можно смело оставлять без присмотра на ночь, батарея никогда не перегреется. К тому же оно почти бесшумное и очень лёгкое.

Если вам максимального тока в 5-7А маловато (ваш аккумулятор бывает часто сильно разряжен), можно легко увеличить его до 7-10А, заменив резистор R8 на 0,1Ом 5Вт. Во втором БП с более мощной сборкой по 12В именно так я и сделал:

Вариант 2.

Следующим подопытным у нас будет БП Sparkman SM-250W реализованный на широко известном и горячо любимом ШИМ TL494 (КА7500).

Переделка такого БП ещё проще, чем на LPG-899, так как в ШИМ TL494 нет никаких встроенных защит по напряжениям каналов, зато есть второй компаратор ошибки, который зачастую свободен (как и в данном случае). Схема оказалась практически один к одному со схемой PowerMaster. Её я и взял за основу:

План действий:


Это был, пожалуй, самый экономичный вариант. Выпаянных деталей у вас останется гораздо больше чем затраченных J. Особенно если учесть что сборка SBL1040CT была извлечена из канала 5В, а туда были впаяны диоды, в свою очередь добытые, с канала -5В. Все затраты состояли из крокодилов, светодиода и предохранителя. Ну, можно ещё ножки приделать для красоты и удобства.

Вот плата в полном сборе:

Если вас пугают манипуляции с 15 и 16-й ногами ШИМ, подбор шунта с сопротивлением в 0,005Ом, устранение возможных сверчков, можно переделать БП на TL494 и несколько другим способом.

Вариант 3.

Итак: наша следующая «жертва» - БП Sparkman SM-300W. Схема абсолютно аналогична варианту 2, но имеет на борту более мощную выпрямительную сборку по 12В каналу, более солидные радиаторы. Значит - с него мы возьмем больше, например 10А.

Этот вариант однозначен для тех схем, где ноги 15 и 16 ШИМ уже задействованы и вы не хотите разбираться – зачем и как это можно переделать. И вполне пригоден для остальных случаев.

Повторим в точности пункты 1 и 2 из второго варианта.

Канал 5В, в данном случае, я демонтировал полностью.

Чтобы не пугать вентилятор напряжением в 14,4В - собран узел на VT2, R9, VD3, HL1. Он не позволяет превышать напряжение на вентиляторе более чем 12-13В. Ток через VT2 небольшой, нагрев транзистора тоже, можно обойтись без радиатора.

С принципом действия защиты от переполюсовки и схемы ограничителя зарядного тока и вы уже знакомы, но вот место его подключения здесь - иное.

Управляющий сигнал с VT1 через R4 заведен на 4-ю ногу KA7500B (аналог TL494). На схеме не отображено, но там должен был остаться от оригинальной схемы резистор в 10кОм с 4-й ноги на землю, его трогать не надо .

Действует это ограничение так. При небольших токах нагрузки транзистор VT1 закрыт и на работу схемы никак не влияет. На 4-й ноге напряжение отсутствует, так как она посажена на землю через резистор. А вот когда ток нагрузки растет, падение напряжения на R6 и R7 соответственно тоже растет, транзистор VT1 начинает открываться и совместно с R4 и резистором на землю они образуют делитель напряжения. Напряжение на 4-й ноге возрастает, а так как потенциал на этой ноге, согласно описанию TL494, непосредственно влияет на максимальное время открытия силовых транзисторов, то ток в нагрузке уже не растет. При указанных номиналах порог ограничения составил 9,5-10А. Основное отличие от ограничения в варианте 1, несмотря на внешнюю похожесть, резкая характеристика ограничения, т.е. при достижении порога срабатывания, напряжение на выходе спадает быстро.

Вот этот вариант в готовом виде:

Кстати, эти зарядки можно использовать и в качестве источника питания для автомагнитолы, переноски на 12В и других автомобильных устройств. Напряжение стабилизировано, максимальный ток ограничен, спалить что-нибудь будет не так то просто.

Вот готовая продукция:

Переделка БП под зарядное по такой методике – дело одного вечера, но для себя любимого времени не жалко?

Тогда позвольте представить:

Вариант 4.

За основу взято БП Linkworld LW2-300W на ШИМ WT7514L (аналог уже знакомой нам по первому варианту LPG-899).

Ну что ж: демонтаж ненужных нам элементов осуществляем согласно варианту 1, с той лишь разницей, что канал 5В тоже демонтируем – он нам не пригодится.

Здесь схема будет более сложной, вариант с монтажом без изготовления печатной платы в данном случае – не вариант. Хотя и полностью от него мы отказываться не будем. Вот приготовленная частично плата управления и сама жертва эксперимента ещё не отремонтированная:

А вот она уже после ремонта и демонтажа лишних элементов, а на втором фото с новыми элементами и на третьем её обратная сторона с уже проклеенными прокладками изоляции платы от корпуса.

То, что обведено на схеме рис.6 зеленой линией – собрано на отдельной плате, остальное было собрано на освободившемся от лишних деталей месте.

Для начала попробую рассказать: чем это зарядное отличается от предыдущих устройств, а уж потом расскажу какие детали, за что отвечают.

  • Включение зарядного происходит только при подключении к нему источника ЭДС (в данном случае аккумулятора), вилка при этом должна быть включена в сеть заблаговременно J.
  • Если по каким-либо причинам напряжение на выходе превысит 17В или окажется менее 9В – ЗУ отключается.
  • Максимальный ток заряда регулируется переменным резистором от 4 до 12А, что соответствует рекомендуемым токам заряда аккумуляторов от 35А/ч до 110А/ч.
  • Напряжение заряда регулируется автоматически 14,6/13,9В, либо 15,2/13,9В в зависимости от выбранного пользователем режима.
  • Напряжение питания вентилятора регулируется автоматически в зависимости от тока заряда в диапазоне 6-12В.
  • При КЗ или переполюсовке срабатывает электронный самовосстанавливающийся предохранитель на 24А, схема которого, с незначительными изменениями, была заимствована из разработки почетного кота победителя конкурса 2010г Simurga. Скорость в микросекундах не мерил (нечем), но штатная защита БП дернуться не успевает – он гораздо быстрее, т.е. БП продолжает работать как ни в чём не бывало, только вспыхивает красный светодиод срабатывания предохранителя. Искр, при замыкании щупов практически не видно, даже при переполюсовке. Так что очень рекомендую, на мой взгляд эта защита лучшая, по крайней мере из тех что я видел (хотя и немного капризная на ложные срабатывания в частности, возможно придётся посидеть с подбором номиналов резисторов).

Теперь, кто за что отвечает:

  • R1, C1, VD1 – источник опорного напряжения для компараторов 1, 2 и 3.
  • R3, VT1 – цепь автозапуска БП при подключении аккумулятора.
  • R2, R4, R5, R6, R7 – делитель опорных уровней для компараторов.
  • R10, R9, R15 – цепь делителя защиты от перенапряжения на выходе о которой я упоминал.
  • VT2 и VT4 с окружающими элементами – электронный предохранитель и токовый датчик.
  • Компаратор OP4 и VT3 с резисторами обвязки – регулятор оборотов вентилятора, информация о токе в нагрузке, как видите, поступает от токового датчика R25, R26.
  • И наконец, самое важное - компараторы с 1-го по 3-й обеспечивают автоматическое управление процессом заряда. Если аккумулятор достаточно сильно разряжен и хорошо «кушает» ток, ЗУ ведет заряд в режиме ограничения максимального тока установленного резистором R2 и равном 0,1С (за это отвечает компаратор ОР1). При этом, по мере заряда аккумулятора, напряжение на выходе зарядного будет расти и при достижении порога 14,6 (15,2), ток начнет уменьшаться. Вступает в работу компаратор ОР2. Когда ток заряда упадет до 0,02-0,03С (где С емкость аккумулятора а А/ч), ЗУ перейдет на режим дозаряда напряжением 13,9В. Компаратор OP3 используется исключительно для индикации, и никакого влияния на работу схемы регулировки не оказывает. Резистор R2 не просто меняет порог максимального тока заряда, но и меняет все уровни контроля режима заряда. На самом деле, с его помощью выбирается емкость заряжаемого аккумулятора от 35А/ч до 110А/ч, а ограничение тока это «побочный» эффект. Минимальное время заряда будет при правильном его положении, для 55А/ч примерно посередине. Вы спросите: «почему?», да потому что если, к примеру, при зарядке 55А/ч аккумулятора поставить регулятор в положение 110А/ч – это вызовет слишком ранний переход к стадии дозаряда пониженным напряжением. При токе 2-3А, вместо 1-1,5А, как задумывалось разработчиком, т.е. мной. А при выставлении 35А/ч будет мал начальный ток заряда, всего 3,5А вместо положенных 5,5-6А. Так что если вы не планируете постоянно ходить смотреть и крутить ручку регулировки, то выставляйте как положено, так будет не только правильнее, но и быстрее.
  • Выключатель SA1 в замкнутом состоянии переводит ЗУ в режим «Турбо/Зима». Напряжение второй стадии заряда повышается до 15,2В, третья остается без существенных изменений. Рекомендуется для заряда при минусовых температурах аккумулятора, плохом его состоянии или при недостатке времени для стандартной процедуры заряда, частое использование летом при исправном аккумуляторе не рекомендуется, потому что может отрицательно сказаться на сроке его службы.
  • Светодиоды, помогают ориентироваться, на какой стадии находится процесс заряда. HL1 – загорается при достижении максимально допустимого тока заряда. HL2 – основной режим заряда. HL3 – переход в режим дозаряда. HL4 – показывает что заряд фактически окончен и аккумулятор потребляет менее 0,01С (на старых или не очень качественных аккумуляторах до этого момента может и не дойти, поэтому ждать очень долго не стоит). Фактически аккумулятор уже хорошо заряжен после зажигания HL3. HL5 – загорается при срабатывании электронного предохранителя. Чтобы вернуть предохранитель в исходное состояние, достаточно кратковременно отключить нагрузку на щупах.

Что касается наладки. Не подключая плату управления или не запаивая в неё резистор R16 подбором R17 добиться напряжения 14,55-14,65В на выходе. Затем подобрать R16 таким, чтобы в режиме дозаряда (без нагрузки) напряжение падало до 13,8-13,9В.

Вот фото устройства в собранном виде без корпуса и в корпусе:

Вот собственно и всё. Зарядка была испытана на разных аккумуляторах, адекватно заряжает и автомобильный, и от UPS (хотя все мои зарядки заряжают любые на 12В нормально, потому что напряжение стабилизировано J). Но это побыстрее и ничего не боится, ни КЗ, ни переполюсовки. Правда, в отличие от предыдущих, в качестве БП использовать не получится (очень оно стремится управлять процессом и не хочет включаться при отсутствии напряжения на входе). Зато, его можно использовать в качестве зарядного для аккумуляторов резервного питания, вообще не отключая никогда. Заряжать будет в зависимости от степени разряда автоматически, а из-за малого напряжения в режиме дозаряда существенного вреда аккумулятору не принесет даже при постоянном включении. При работе, когда аккумулятор уже почти заряжен, возможен переход зарядного в импульсный режим заряда. Т.е. ток зарядки колеблется от 0 до 2А с интервалом от 1 до 6 секунд. Сначала, хотел было устранить это явление, но, почитав литературу – понял, что это даже хорошо. Электролит лучше перемешивается, и даже иногда способствует восстановлению потерянной емкости. Поэтому решил оставить так как есть.

Вариант 5.

Ну вот, попалось что-то новенькое. На этот раз LPK2-30 с ШИМ на SG6105. Такого «зверя» мне для переделки раньше мне ещё не попадалось. Но я вспомнил многочисленные вопросы на форуме и жалобы пользователей на проблемы по переделке блоков на этой м/с. И принял решение, хоть зарядка мне больше и не нужна, нужно победить эту м/с из спортивного интереса и на радость людям. А заодно и опробовать на практике, возникшую в моей голове идею оригинального способа индикации режима заряда.

Вот он, собственной персоной:

Начал, как обычно, с изучения описания. Обнаружил, что она похожа на LPG-899, но есть и некоторые отличия. Наличие 2-х встроенных TL431 на борту, вещь конечно интересная, но… для нас - несущественная. А вот отличия в цепи контроля напряжения 12В, и появление входа для контроля отрицательных напряжений, несколько усложняет нашу задачу, но в разумных пределах.

В результате раздумий и непродолжительных плясок с бубном (куда уж без них) возник вот такой проект:

Вот фото этого блока уже переделанного на один канал 14,4В, пока без платы индикации и управления. На втором его обратная сторона:

А это внутренности блока в сборе и внешний вид:

Обратите внимание, что основная плата была развернута на 180 градусов, от своего первоначального расположения, для того чтобы радиаторы не мешали монтажу элементов передней панели.

В целом это немного упрощённый вариант 4. Разница заключается в следующем:

  • В качестве источника для формирования «обманных» напряжений на входах контроля было взято 15В с питания транзисторов раскачки. Оно в комплекте с R2-R4 делает всё необходимое. И R26 для входа контроля отрицательных напряжений.
  • Источником опорного напряжения для уровней компаратора было взято напряжение дежурки, оно же питание SG6105. Ибо, большая точность, в данном случае, нам не нужна.
  • Регулировка оборотов вентилятора тоже была упрощена.

А вот индикация была немного модернизирована (для разнообразия и оригинальности). Решил сделать по принципу мобильного телефона: банка наполняющаяся содержимым. Для этого я взял двухсегментный светодиодный индикатор с общим анодом (схеме верить не надо – не нашёл в библиотеке подходящего элемента, а рисовать было лень L), и подключил как показано на схеме. Получилось немного не так как задумывал, вместо того чтобы средние полоски «g» при режиме ограничения тока заряда гасли, вышло, что они - мерцают. В остальном - всё нормально.

Индикация выглядит так:

На первом фото режим заряда стабильным напряжением 14,7В, на втором – блок в режиме ограничения тока. Когда ток станет достаточно низким, у индикатора загорятся верхние сегменты, и напряжение на выходе зарядного упадёт до 13,9В. Это можно увидеть на фото приведённом немного выше.

Так как напряжение на последней стадии всего 13,9В можно спокойно дозаряжать аккумулятор сколь угодно долго, вреда ему это не принесёт, потому что генератор автомобиля обычно даёт большее напряжение.

Естественно, в этом варианте можно использовать и плату управления из варианта 4. Обвязку GS6105 только нужно сделать так, как здесь.

Да, чуть не забыл. Резистор R30 устанавливать именно так - совсем не обязательно. Просто, у меня никак не выходило подобрать номинал впараллель к R5 или R22 чтобы получить на выходе нужное напряжение. Вот и вывернулся таким… нетрадиционным образом. Можно просто подобрать номиналы R5 или R22, как я делал в других вариантах.

Заключение.

Как видите, при правильном подходе, почти любой БП АТХ можно переделать в то, что вам нужно. Если будут новые модели БП и нужда в зарядках, то возможно будет и продолжение.

Кота от всего сердца поздравляю с юбиелеем! В его честь, кроме статьи, ещё был заведён новый жилец - очаровательная серая киска Маркиза.


При переделке компьютерных импульсных блоков питания (далее - ИБП) с управляющей микросхемой TL494 под блоки питания для питания трансиверов, радиоаппаратуры и зарядные устройства для автомобильных аккумуляторов , накопилась часть ИБП, которые были неисправны и не поддавались ремонту, работали нестабильно или имели управляющую микросхему другого типа.

Дошли руки и до оставшихся блоков питания, из них после недолгих экспериментов вывели технологию переделки под зарядные устройства (далее - ЗУ) для автомобильных аккумуляторов.
Также после выхода на электронную почту начали приходить письма с разными вопросами, мол, что и как, с чего начинать.

С чего начать?

Перед тем как приступить к переделке следует внимательно ознакомиться с книгой , в ней подробно изложено описание работы ИБП с управляющей микросхемой TL494. Также не лишним было бы посещение сайтов и , где подробно рассмотрены вопросы переделки компьютерных ИБП. Для тех радиолюбителей, которые не смогли найти указанную книгу попробуем «на пальцах» объяснить, как «укротить» ИБП.
И так обо всем по порядку.

И так рассмотрим случай, когда АКБ еще не подсоединена. Напряжение сети переменного тока подается через терморезистор TR1, сетевой плавкий предохранитель FU1, помехоподавляющий фильтр к выпрямителю на диодной сборке VDS1. Выпрямленное напряжение сглаживается фильтром на конденсаторах С6, С7, на выходе выпрямителя получается напряжение + 310 В. Это напряжение подается к преобразователю напряжения на мощных ключевых транзисторах VT3, VT4 с импульсным силовым трансформатором Тр2.

Сразу же оговоримся, что для нашего зарядного устройства резисторы R26, R27, предназначенные для приоткрывания транзисторов VT3, VT4, отсутствуют. Переходы база-эмиттер транзисторов VT3, VT4 зашунтированы цепями R21R22 и R24R25, соответственно, вследствие чего, транзисторы закрыты, преобразователь не работает, выходное напряжение отсутствует.

При подсоединении АКБ к выходным клеммам Кл1 и Кл2, при этом загорается светодиод VD12, напряжение подается через цепочку VD6R16 к выводу № 12 для питания микросхемы МС1 и через цепочку VD5R12 к средней обмотке согласующего трансформатора Тр1 драйвера на транзисторах VT1, VT2. Управляющие импульсы с выводов 8 и 11 чипа МС1 поступают на драйвер VT1, VT2, и через согласующий трансформатор Тр1 к базовым цепям силовых ключевых транзисторов VT3, VT4, открывая их поочередно.

Переменное напряжение с вторичной обмотки силового трансформатора Тр2 канала выработки напряжения + 12 В поступает на двухполупериодный выпрямитель на сборке из двух диодов Шоттки VD11. Выпрямленное напряжение сглаживается LC фильтром L1C16 и поступает к выходным клеммам Кл1 и Кл2. С выхода выпрямителя также питается штатный вентилятор М1, предназначенный для охлаждения деталей ИБП, включенный через гасящий резистор R33 для уменьшения скорости вращения лопастей и шума вентилятора.

АКБ через клемму Кл2 подключена к минусу выхода выпрямителя ИБП через резистор R17. При протекании тока заряда от выпрямителя к АКБ, на резисторе R17 образуется падение напряжения, которое подается к выводу № 16 одного из компараторов микросхемы МС1. При превышении тока заряда больше установленного уровня (движком резистора установки тока заряда R4), микросхема МС1 увеличивает паузу между выходными импульсами, уменьшая ток в нагрузку и тем самым стабилизируя ток зарядки АКБ.

Цепь R14R15 стабилизации выходного напряжения R14R15 подключена к выводу № 1 второго компаратора микросхемы МС1, предназначена для ограничения его значения (на уровне + 14,2 - + 16 В) в случае отсоединения АКБ. При увеличении выходного напряжения выше установленного уровня, микросхема МС1 увеличит паузу между выходными импульсами, тем самым стабилизируя напряжения на выходе.
Микроамперметр РА1, с помощью переключателя SA1 подключается к разным точкам выпрямителя ИБП, используется для измерения тока заряда и напряжения на АКБ.

В качестве ШИМ-регулятора управления МС1 используется микросхема типа TL494 или ее аналоги: IR3M02 (SHARP, Япония), µА494 (FAIRCHILD, США), КА7500 (SAMSUNG, Корея), МВ3759 (FUJITSU, Япония, КР1114ЕУ4 (Россия).

Начинаем переделку!

Отпаиваем все провода с выходных разъемов, оставляем по пять проводов желтого цвета (канал выработки напряжения +12 В) и пять проводов черного цвета (GND, корпус, земля), по четыре провода каждого цвета скручиваем вместе и спаиваем, эти концы впоследствии будут подпаяны к выходным клеммам ЗУ.

Снимаем переключатель 115/230V и гнезда для подсоединения шнуров.
На месте верхнего гнезда устанавливаем микроамперметр РА1 на 150 - 200 мкА от кассетных магнитофонов, например М68501, М476/1. Родная шкала снята, вместо нее установлена самодельная шкала, изготовленная с помощью программы FrontDesigner_3.0, файлы шкал можно скачать с сайта журнала . Место нижнего гнезда закрываем жестью размерами 45×25 мм и сверлим отверстия для резистора R4 и переключателя рода измерений SA1. На задней панели корпуса устанавливаем клеммы Кл 1 и Кл 2.

Также, нужно обратить внимание на размер силового трансформатора, (на плате - тот который побольше), на нашей схеме (Рис. 5) это Тр 2. От него зависит максимальная мощность блока питания. Высота его должна быть не менее 3 см. Встречаются блоки питания с трансформатором высотой менее 2 см. Мощность таких 75 Вт, даже если написано 200 Вт .

В случае переделки ИБП типа АТ снимаем резисторы R26, R27 приоткрывающие транзисторы ключевого преобразователя напряжения VT3, VT4. В случае переделки ИБП типа АТХ снимаем с платы детали дежурного преобразователя.

Выпаиваем все детали кроме: цепей помехоподавляющего фильтра, высоковольтного выпрямителя VDS1, C6, C7, R18, R19, инвертора на транзисторах VT3, VT4, их базовых цепей, диодов VD9, VD10, цепей силового трансформатора Тр2, С8, С11, R28, драйвера на транзисторах VT3 или VT4, согласующего трансформатора Тр1, деталей С12, R29, VD11, L1, выходного выпрямителя, согласно схемы (Рис. 5).


У нас должна получиться плата примерно такого вида (Рис. 6). Даже если в качестве управляющего ШИМ-регулятора, переделываемого ИБП, используется микросхема типа DR-B2002, DR-B2003, DR-B2005, WT7514 или SG6105D проще их снять и сделать с нуля на TL494. Блок управления А1 изготавливаем в виде отдельной платы (Рис. 7).



Штатная диодная сборка в выпрямителе +12 В рассчитана на слишком слабый ток (6 - 12 А) - ее использовать не желательно, хотя для зарядного устройства вполне допустимо. На ее место можно установить диодную сборку из 5-вольтового выпрямителя (она на больший ток рассчитана, но имеет обратное напряжение всего 40 В). Так как в некоторых случаях обратное напряжение на диодах в выпрямителе +12 В достигает значения 60 В! , лучше установить сборку на диодах Шоттки на ток 2×30 А и обратное напряжение не менее 100 В, например, 63CPQ100, 60CPQ150 .

Конденсаторы выпрямителя 12-вольтовой цепи заменяем на рабочее напряжение 25 В (16-ти вольтовые нередко вздувались).

Индуктивность дросселя L1 должна быть в диапазоне 60 - 80 мкГн, его обязательно отпаиваем и измеряем индуктивность, часто попадались экземпляры и на 35 - 38 мкГн, с ними ИБП работает неустойчиво, жужжит при увеличении тока нагрузки больше 2 А. При слишком большой индуктивности, более 100 мкГн, может произойти пробой по обратному напряжению сборки диодов Шотки, если она была взята из 5-ти вольтового выпрямителя. Для улучшения охлаждения обмотки выпрямителя +12 В и кольцевого сердечника снимаем неиспользуемые обмотки для выпрямителей -5 В, -12 В и +3,3 В. Возможно придется домотать до оставшейся обмотки несколько витков провода до получения требуемой индуктивности (Рис. 8).


Если ключевые транзисторы VT3, VT4 были неисправными, а оригинальные не удается приобрести, то можно установить более распространенные транзисторы типа MJE13009. Транзисторы VT3, VT4 прикручены к радиатору, как правило, через изоляционную прокладку. Необходимо транзисторы снять и для увеличения теплового контакта, с обеих сторон прокладку промазать термопроводящей пастой. Диоды VD1 - VD6 рассчитанные на прямой ток не менее 0,1 А и обратное напряжение не менее 50 В, например КД522, КД521, КД510.

Все электролитические конденсаторы на шине +12 В заменяем на напряжение 25 В. При монтаже также надо учесть, что резисторы R17 и R32 в процессе работы блока нагреваются, их надо расположить поближе к вентилятору и подальше от проводов.
Светодиод VD12 можно приклеить к микроамперметру РА1 сверху для освещения его шкалы.

Наладка

При наладке ЗУ желательно воспользоваться осциллографом, он позволит увидеть импульсы в контрольных точках и поможет нам значительно сэкономить время. Проверяем монтаж на наличие ошибок. К выходным клеммам подключаем аккумуляторную батарею (далее - АКБ). В первую очередь проверяем наличие генерации на выводе № 5 генератора пилообразного напряжения МС (Рис. 9).

Проверяем наличие указанных напряжений согласно схемы (Рис. 5)на выводах № 2, № 13 и № 14 микросхемы МС1. Движок резистора R14 устанавливаем в положение максимального сопротивления, и проверяем наличие импульсов на выходе микросхемы МС1, на выводах № 8 и № 11 (Рис. 10).

Также проверяем форму сигнала между выводах № 8 и № 11 МС1 (Рис. 11), на осциллограмме видим паузу между импульсами, отсутствие симметрии импульсов может говорить о неисправности базовых цепей драйвера на транзисторах VT1, VT2.


Проверяем форму импульсов на коллекторах транзисторов VT1, VT2 (Рис. 12),

А также форму импульсов между коллекторами этих транзисторов (Рис. 13).


Отсутствие симметрии импульсов может говорить о неисправности самих транзисторов VT1, VT2, диодов VD1, VD2, перехода база-эмиттер транзисторов VT3, VT4 или их базовых цепей. Иногда пробой перехода база-эмиттер транзистора VT3 или VT4 приводит к выходу из строя резисторов R22, R25, диодного моста VDS1 и только потом к перегоранию предохранителя FU1.

Левый, по схеме, вывод резистора R14 подключаем в источнику образцового напряжения на 16 В (почему именно 16 В - чтобы скомпенсировать потери в проводах и на внутреннем сопротивлении сильно сульфатированной АКБ, хотя можно и 14,2 В). Уменьшая сопротивление резистора R14 до момента пропадания импульсов на выводах № 8 и № 11 МС, точнее в этот момент пауза становится равной полупериоду повторения импульсов.

Первое включение, тестирование

Правильно собранное, без ошибок, устройство запускается сразу, но в целях безопасности вместо сетевого предохранителя включаем лампу накаливания напряжением 220 В мощностью 100 Вт, она будет служить нам балластным резистором и в аварийной ситуации спасет детали схемы ИБП от повреждения.

Движок резистора R4 устанавливаем в положение минимального сопротивления, включаем зарядное устройство (ЗУ) в сеть, при этом лампа накаливания должна кратковременно вспыхнуть и погаснуть. При работе ЗУ на минимальном токе нагрузки радиаторы транзисторов VT3, VT4 и диодной сборки VD11 практически не нагреваются. При увеличении сопротивления резистора R4 начинает возрастать ток зарядки, при каком-то уровне вспыхнет лампа накаливания. Ну, вот и все, можно снимать ламу и ставить на место предохранитель FU1.

В случае если вы все-таки решились установить диодную сборку из 5-вольтового выпрямителя (повторимся, что она выдерживает по току, но обратное напряжение всего 40 В), включаем ИБП в сеть на одну минуту, а движком резистором R4 устанавливаем ток в нагрузку 2 - 3 А, выключаем ИБП. Радиатор с диодной сборкой должен быть теплым, но ни в коем случае не горячим. Если он горячий - значит, данная диодная сборка в данном ИБП долго не проработает и обязательно выйдет из строя.

Проверяем ЗУ на максимальном токе в нагрузку, для этого удобно использовать устройство , подключенное параллельно АКБ, которое позволит не испортить батарею длительными зарядами во время наладки ЗУ. Для увеличения максимального тока зарядки, можно несколько увеличить сопротивления резистора R4, но при этом не следует превышать максимальную мощность на которую рассчитан ИБП.

Подбором сопротивлений резисторов R34 и R35 устанавливаем пределы измерения для вольтметра и амперметра соответственно.

Фотки

Монтаж собранного устройства показан на (Рис. 14).



Теперь можно закрывать крышку. Внешний вид ЗУ показан на (Рис. 15).